
Key SQL Function in
DB2 9 for z/OS &
Beyond

James Guo
IBM, Silicon Valley Lab

August 2, 2010 4:30 pm – 5:30 pm
Session Number 7967

2

© Copyright IBM Corporation [current year]. All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES
ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE
INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE
RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS
PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND
CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR
SOFTWARE.

IBM, the IBM logo, ibm.com, DB2 are trademarks or registered trademarks of International Business Machines Corporation
in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence
in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks
owned by IBM at the time this information was published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

Disclaimer

http://www.ibm.com/legal/copytrade.shtml�

3

Agenda

• SQL Enhancements in DB2 9 for z/OS
• Selected SQL Overview in DB2 10 for z/OS

• Hash Access
• Temporal Data
• IBM ISAO

4

Click to edit Master title style

SQL Enhancements in
DB2 9 for z/OS

5

 Key SQL Functions in V9
New data types: BIGINT, BINARY, VARBINARY,
DECFLOAT
Instead of Trigger
Merge
SELECT FROM MERGE/UPDATE/DELETE
ORDER BY and FETCH FIRST in subselect
TRUNCATE
INTERSECT/EXCEPT
Index on Expression

6

Sparse Index and In Memory Data Caching
Dynamic Index Anding and Star Schema
OLAP specification -- RANK, DENSE_RANK,
ROW_NUMBER
RENAME INDEX/COLUMN
REOPT (AUTO)

Key SQL Functions in V9 - cont'd

7

New data types: BIGINT, BINARY,
VARBINARY, DECFLOAT

BIGINT - big integer.
Big integer is a binary integer with a precision of 63 bits. The
range of big integers is [-9223372036854775808,
9223372036854775807

BINARY – fixed-length binary string.
Fixed-length binary string is in a range of [1,255]. The
padding with hexadecimal zeros (X’00’). Not associated
with any CCSID

VARBINARY – varying-length binary string.
Varying-length binary string is in a range of [1,32704]. No
padding is performed. Not associated with any CCSID

DECFLOAT – Decimal float.
DECFLOAT(16) = decimal64 format (8 bytes)
DECFLOAT(34) = decimal128 format (16 bytes)

8

DECFLOAT

-1.000000000000000000000000000000000x10-6143Largest negative DECFLOAT(34)
Value

1.000000000000000000000000000000000x10-6143Smallest positive DECFLOAT(34)
Value

9.999999999999999999999999999999999x106144Largest DECFLOAT(34) Value

-9.999999999999999999999999999999999x106144Smallest DECFLOAT(34) Value

-1.000000000000000x10-383Largest negative DECFLOAT(16) value

1.000000000000000x10-383Smallest positive DECFLOAT(16)
Value

9.999999999999999x10384Largest DECFLOAT(16) Value

-9.999999999999999x10384384Smallest DECFLOAT(16) Values

LimitDescription

-1.000000000000000000000000000000000x10-6143Largest negative DECFLOAT(34)
Value

1.000000000000000000000000000000000x10-6143Smallest positive DECFLOAT(34)
Value

9.999999999999999999999999999999999x106144Largest DECFLOAT(34) Value

-9.999999999999999999999999999999999x106144Smallest DECFLOAT(34) Value

-1.000000000000000x10-383Largest negative DECFLOAT(16) value

1.000000000000000x10-383Smallest positive DECFLOAT(16)
Value

9.999999999999999x10384Largest DECFLOAT(16) Value

-9.999999999999999x10384384Smallest DECFLOAT(16) Values

LimitDescription

Both IEEE and hexadecimal floating point numbers can only approximate
common decimal numbers. But DFP can represent decimal number exactly.

DFP can represent much bigger and smaller number than DECIMAL.

9

Instead of Trigger
A new type of trigger (~ BEFORE, AFTER
triggers)
Defined on VIEWs

provides an extension to the updatability of
views
requested update operation against the view
gets replaced by the trigger logic
application still believes all operations are
performed against the view
applicable even for updatable views

10

Instead of Trigger
CREATE TABLE WEATHER (CITY VARCHAR(25), TEMPF DECIMAL(5,2));
CREATE VIEW CELCIUS_WEATHER_V (CITY, TEMPC) AS
 SELECT CITY, (TEMPF-32)*5.00/9.00 FROM WEATHER

CREATE TRIGGER CW_INSERT INSTEAD OF INSERT ON
 CELCIUS_WEATHER_V
REFERENCING NEW AS NEWCW DEFAULTS NULL
FOR EACH ROW MODE DB2SQL
 INSERT INTO WEATHER VALUES (NEWCW.CITY,
 9.00/5.00*NEWCW.TEMPC+32)

CREATE TRIGGER CW_UPDATE INSTEAD OF UPDATE ON
 CELCIUS_WEATHER_V
REFERENCING NEW AS NEWCW OLD AS OLDCW DEFAULTS NULL
FOR EACH ROW MODE DB2SQL
 UPDATE WEATHER AS W
 SET W.CITY = NEWCW.CITY,
 W.TEMPF = 9.00/5.00*NEWCW.TEMPC+32
 WHERE W.CITY = OLDCW.CITY

11

Merge
Combine Update and Insert operation to a target table or view, from
a input source of a list of host-variable-arrays modeled as a source
table

When source rows match to target, Update target rows from
source
When source rows do not match to target, Insert source rows
into target
Update/Insert triggers will be fired

MERGE INTO account AS T
 USING VALUES (:hv_id, :hv_amt) FOR 5 ROWS AS S(id,amt)
ON T.id = S.id
 WHEN MATCHED THEN
 UPDATE SET balance = T.balance + S.amt
 WHEN NOT MATCHED THEN
 INSERT (id, balance) VALUES (S.id, S.amt)
NOT ATOMIC CONTINUE ON SQLEXCEPTION

12

SELECT FROM MERGE/UPDATE/DELETE
V8 - The INSERT statement was allowed in the FROM
clause
V9 - A searched UPDATE/DELETE is now allowed in the
FROM clause

SELECT SUM(Salary)
FROM OLD TABLE
(DELETE FROM Employee WHERE Level =
'Contractor');

Delete employees at level 'Contractor' and return the total amount
of salary:

13

SELECT FROM MERGE/UPDATE/DELETE

Update salaries of employees at level 'Associate' and
return the new salary:

SELECT Name, Salary
FROM FINAL TABLE
(UPDATE Employee SET Salary = Salary *1.1
 WHERE Level = 'Associate');

Update salaries of employees at level 'Associate' and return the old
salary:

SELECT Name, Salary
FROM OLD TABLE
(UPDATE Employee SET Salary = Salary *1.1
 WHERE Level = 'Associate');

14

ORDER BY and FETCH FIRST in subselect

ORDER BY clause can be specified in subselect or
fullselect
FETCH FIRST n ROWS ONLY clause can be
specified in subselect or fullselect
ORDER OF table-designator extension to the
ORDER BY clause

(SELECT * FROM T1
 ORDER BY C1)
UNION
(SELECT * FROM T2
 ORDER BY C2
 FETCH FIRST 2 ROWS)

(SELECT * FROM T1
 ORDER BY C1)
UNION
SELECT * FROM T2
ORDER BY C2
FETCH FIRST 2 ROWS

15

TRUNCATE Table
A fast way to empty a table
DELETE Triggers are ignored
Indexes, LOB, XML Tablespaces are also deleted
X lock on the target table, Mass-delete

TRUNCATE <TABLE> TABLE-NAME

 < DROP STORAGE | REUSE STORAGE>

 < RESTRI CT WHEN DELETE TRI GGERS | I GNORE DELETE TRI GGERS>

 < I MMEDI ATE>

16

INTERSECT/EXCEPT

SELECT c11, c12, …, c1n FROM T1 <set-op>
SELECT c21, c22, …, c2m FROM T2

SET operator: UNION, INTERSECT, EXCEPT

INTERSECT EXCEPT
(Difference)

UNION

R1 R1R2 R2

R1 R2

INTERSECT EXCEPT
(Difference)

UNION

R1 R1R2 R2

R1 R2R1 R2

17

INTERSECT/EXCEPT

5

4

4

4

3

3

3

35

34

24

243

5232

45132

424132

4323131

31522111

11211111

INTERSECTINTERSECT
ALLEXCEPTEXCEPT

ALLUNIONUNION ALLR2R1

5

4

4

4

3

3

3

35

34

24

243

5232

45132

424132

4323131

31522111

11211111

INTERSECTINTERSECT
ALLEXCEPTEXCEPT

ALLUNIONUNION ALLR2R1

18

Index on Expression
Create index on result of Expression
Enhance Query Performance
If we want to search for customers whose Upper(Lastname)
= ‘SMITH’

CREATE INDEX IX_LastName ON CUSTOMER
 (UPPER (Lastname), CUSTOMER_ID);

SELECT * FROM EMP
 WHERE UPPER (Lastname) = 'SMITH';

Root

SMITH Smith bush smith

Root

SMITH Smith bush smith

Root

BUSH
SMITH(Brian)
SMITH(John)
SMITH(Kyle)

… ZAJAC

Root

BUSH
SMITH(Brian)
SMITH(John)
SMITH(Kyle)

… ZAJAC

19

Index on Expression - 2
CREATE INDEX IX1 ON T1 (HEX(c1), BINARY(LTRIM(c2)));
CREATE INDEX IX2 ON T2 (SUBSTR(c2, 1, 23), CONCAT(c2, c3));
CREATE INDEX IX3 ON T2 (salary, bonus/salary, bonus+salary);
CREATE INDEX IX4 ON T1 (DAYOFYEAR(endship) -
DAYOFYEAR(startship));
CREATE INDEX IX5 ON T2 (GRAPHIC(c3));
CREATE INDEX IX6 ON T1 (VARCHAR(INSERT(vchar30,1,0,''),20));
CREATE INDEX IX7 ON T1 (posstr(lvcharx2, '7.2E+02')) ;
CREATE INDEX IX8 ON T1 (MIDNIGHT_SECONDS(birthday));

20

Sparse Index and In Memory Data
Caching

Tables which are lack of appropriate index or
enough statistics can benefit from sparse
index / IMWF
Sparse index / IMWF is used for Nested
Loop Join
Whether use sparse index or IMWF is a
runtime decision according to storage
availability

21

22

23

Dynamic Index Anding and Star Schema
Each dimension table joins with Fact table
separately
The join result is Rid lists of Fact table
Using Rids Merge (ANDing) to generate final set of
Fact table Rid lists

SELECT PRODNAME, SUM(SALES), ...
 FROM F, PROD P, CUST C, TIME T, STORES S
 WHERE F.PID = P.ID
 AND F.TID = T.ID
 AND F.SID = S.ID
 AND T.MONTH IN ('JAN', 'FEB')
 AND S.LOCATION IN ('SAN JOSE', 'DALLAS')
 AND P.TYPE IN ('FOOD', 'SODA')
 GROUP BY ...

P F

T

S

24

WF(02)

WF(03)

F
INDEX1

F
INDEX2

F
INDEX3RIDLIST1 RIDLIST2

RIDLIST3RIDLIST4

RIDLIST5

F

D1

JOIN
BACK WF(01) JOIN

BACK WF(02)
JOIN
BACK WF(03)

WF(01)

P T

S

SPARSE INDEX
ACCESS

SPARSE INDEX
ACCESS

SPARSE INDEX
ACCESS

pair -join
phase

join-back
phase

RIDs ANDING

RIDs ANDING

P F

T

S

25

OLAP specification -- RANK, DENSE_RANK,
ROW_NUMBER

RANK() OVER Window ----> OLAP Function
PARTITION BY sh.territory --- row should be assigned to partition
according to territory
ORDER BY sh.sales --- row sorted in the order of sales amount
within each partition

Apply after Join, Predicates, Group By, Having
A new class of aggregate functions

Rank
DENSERANK
ROWNUMBER

SELECT sh.territory, sh.sales,
 Rank() over (PARTITION BY sh.territory
 ORDER BY sh.sales desc) as rank
 FROM sales_history;

26

SELECT EMPNUM, DEPT, SALARY,
 RANK() OVER (ORDER BY SALARY DESC) as RANK,
 DENSERANK() OVER (ORDER BY SALARY DESC)as DENSERANK,
 ROWNUMBER() OVER (ORDER BY SALARY DESC) as ROWNUM
FROM EMPLOYEE;

EMPNUM DEPT SALARY RANK DENSERAN
K

ROWNUM

3 - 84000 1 1 1

8 3 79000 2 2 2

6 1 78000 3 3 3

2 1 75000 4 4 4

7 1 75000 4 4 5

12 3 75000 4 4 6

10 3 55000 7 5 7

11 1 53000 8 6 8

OLAP specification -- RANK, DENSE_RANK,
ROW_NUMBER

27

RENAME INDEX/COLUMN
Without having to drop and recreate the
object
Rename Column

Rename Index

ALTER TABLE tb1
 RENAME COLUMN old_columnname
 TO new_columnname

RENAME INDEX/TABLE
 old_name TO new_name

28

REOPT(AUTO)
We currently have REOPT(NONE), REOPT(ONCE) and
REOPT(ALWAYS) for a dynamic query (with parameter
marker).

REOPT(NONE)
Generate access path based on default filter factor at BIND time
Cache the access path

REOPT(ALWAYS)
Generate access path based on real parameter marker value at
each execution
No statement cache

REOPT(ONCE)
Generate access path based on real parameter marker value at
the first excution
Cache the access path

29

REOPT(AUTO)
REOPT(AUTO)

Generate access path based on real parameter marker value at the
first execution.
Cache the access path
At each execution, DB2 will check if the cache plan is still a good
one based on the real value.
A new prepare might be automatically invoked
Cache the newly generated access path
If statement cache is turned off, no reopt occurs

30

• CPU time reductions for queries, batch, & transactions
• SQL enhancements: Moving Sum, Moving Average,

temporal, timestamp, implicit cast, SQL PL, …
• pureXML improvements
• Access improvements: Index include columns, hash, index

list prefetch, workfile spanned records, …
• Optimization techniques

• Remove parallelism restrictions and more even parallel
distribution. Increased zIIP usage.

• In-memory techniques for faster query performance
• Access path stability and control

• Analysis: instrumentation, Data Studio & Optim Query Tuner
• Advanced query acceleration techniques

• IBM Smart Analytics Optimizer

DB2 10 Query Enhancements

31

Click to edit Master title style

DB2 10 Hash Access
Overview

32

Index to Data Access Path

INDEX on AcctID Select Balance
From Accounts
WHERE acctID = 17

• Traverse down Index Tree
• Typically non-leaf portion of tree in the bufferpool
• Leaf Portion of the tree requires I/O
• Requires searching pages at each level of the index

• Access the Data Page
• Typically requires another I/O

• For a 5 Level Index (6 GETP/RELPs, 2 I/O’s, and 5 index page searches)

= Page in Bufferpool
= Page Read from DiskAccounts Table

33

Hash Access

• Hash Access provides the ability to directly locate a row in a table
without having to use an index

• Single GETP/RELP in most cases
• 1 Synch I/Os in common case

• 0 If In Memory Table
• Greatly reduced Search CPU expense

Select Balance
From Accounts
WHERE acctID = 17

= Page in Bufferpool
= Page Read from DiskAccounts Table

35

Using Hash Access

• Hash Access is good for tables:
• With a unique key
• Queried by applications (such as OLTP) needing

single row access via the unique key
• With known approximate size
• Tables where clustering order of data is not important

• Applies to any kind of range processing
• When 20%-50% extra space is not an issue

• Hash Access Path will be chosen when:
• The SELECT statement includes an equal predicate

on all hash key columns (or IN-List)
• DB2 APS determines via hash availability and the specific

query if hash access is suitable

• Follow-up
• Run BIND with EXPLAIN option and query the PLAN_TABLE to check

access path

36

Examples of Select Statements Using
Hash Access

• Simple hash access
• SELECT * FROM T1 WHERE HASHCOL = :HV

• List prefetch/multi-index access with hash access
• SELECT * FROM T1 WHERE (HASHCOL = :HV1 OR

INDEXCOL = :HV2)

• No query parallelism with hash access
• No hash access with star join or hybrid join

37

Example of Application for Hash Access

• Typical Online Banking Application
• SELECT the Account details using account

number (Unique Key)
• Retrieving account details and maybe account

balance
• So far this would be suitable for Hash access

• SELECT all transactions for a certain period
• Used to show money into and out of the account

each day
• This period would probably invoke Sequential

processing
• Either using BETWEEN or > and <
• Neither of these are allowed for Hash access

38

Example of a Suitable Application For
Hash Access

• Car Insurance Application
• Typical Car Insurance application where customer details are

only ever accessed by Policy Number (Unique key)
• When policy is set up a unique policy number is created
• Policy number is used if Customer wants details of policy
• Policy number is used if customer updates policy
• Policy number is used when customer makes a claim
• Policy number is used when claim is processed

• All accesses will use = predicate in the SQL

40

Hashing Summary

• Provides fast, direct location of most rows
• Reduces I/O and CPU in some cases
• Can replace an existing Primary or Unique Key Index

• Faster Insertion/Deletion
• Size of Fixed Size Hash Area is important

• Too small and performance degrades
• Too large and space is wasted

• DB2 helps you manage the size
• REORG AUTOESTSPACE YES
• RTS tracks the number of overflowed entries

Fixed Size Hash Area (n GB)
Hash

Overflow
Area

41

Click to edit Master title style

DB2 10 Temporal Data
Overview

42

Motivation for Temporal Data

• Dramatic cost savings via Application Simplification
• Dramatic Reduction in Time to Deployment
• Auditing compliance advantages by moving logic from

application to database layer
• Provides an easy way for applications to manage time

sensitive data
• Powerful, novel, yet intuitive SQL
• End users deploy without IT Staff intervention
• Query past/future data with current queries
• Same schema name, simply add novel temporal clause
• Response time for current DML/queries preserved
• Response time for past/future queries comparable

43

Versioned data or Temporal Data
• Table-level specification to control data management

based upon time
• Two notions of time:

• System time: notes the occurrence of a data base change
• “row xyz was deleted at 10:05 pm”
• Query at current or any prior period of time
• Useful for auditing, compliance

• Business time: notes the occurrence of a business event
• “customer xyz’s service contract was modified on March 23”
• Query at current or any prior/future period of time
• Useful for tracking of business events over time, application logic

greatly simplified

• New syntax in FROM clause to specify a time criteria for
selecting historical data

44

Current and History

Sep 2008

HistoryCurrent

Aug 2008
Jul 2008

History

Generation

Current SQL Application

Auditing SQL Application
Using ASOF

Transparent/automatic
Access to satisfy ASOF

Queries

45

Temporal UPDATE example (business
time)

46

Click to edit Master title style

IBM Smart Analytics
Optimizer Overview

47

Why Optimize Smart Analytics?
• Today, performance of Business Intelligence (BI)

queries is too unpredictable
• When an analyst submits a query, s/he doesn’t know whether to:

• Wait for the response
• Go out for coffee
• Go out for dinner
• Go home for the night!

• Response time depends upon “performance layer” of indexes &
materializations

• Depends critically on predicting the workload
• But BI is inherently ad hoc!

• Goal of IBM Smart Analytics Optimizer:
Predictably Fast (i.e., Interactive) Ad Hoc Querying
• Any query should run in about the same time
• Permit an Analyst to interact with the data

48

What Is the IBM Smart Analytics Optimizer?
• IBM Smart Analytics Optimizer for z/OS (ISAO) is:

• Network-attached accelerator to DB2 on z/OS

• (Future: also DB2 for Linux, UNIX, and Windows and Informix
IDS)

• Exploits:
• Large main memories
• Commodity multi-core processors
• Extreme compression

• Speeds up typical Data Warehouse / Business Intelligence
SQL queries by 10x to 100x

• Without requiring tuning of indexes, materialized views, etc.

49

Target Market: Business Intelligence (BI)
• Characterized by:

• “Star” or “snowflake” schema:

• Complex, ad hoc queries that typically
• Look for trends, exceptions to make actionable business

decisions
• Touch large subset of the database (unlike OLTP)
• Involve aggregation functions (e.g., COUNT, SUM, AVG,…)
• The “Sweet Spot” for IBM Smart Analytics Optimizer!

City
Region

Store

SALES

Product

Period

Brand

Month

Quarter

Category

Dimensions

Fact Table

50

What IBM Smart Analytics Optimizer is Designed For

• OLAP-style SQL queries:
• Relational star schema (large fact table joined to multiple

dimensions)
• Large subset of data warehouse accessed, reduced significantly by...
• Aggregations (SUM, AVG, COUNT) and optional grouping

(GROUP BY)
• Looking for trends or exceptions

• EXAMPLE SQL:
SELECT PRODUCT_DEPARTMENT, REGION, SUM(REVENUE)
FROM FACT_SALES F

INNER JOIN DIM_PRODUCT P ON F.FKP = P.PK
INNER JOIN DIM_REGION R ON F.FKR = R.PK
LEFT OUTER JOIN DIM_TIME T ON F.FKT = T.PK

WHERE T.YEAR = 2007
GROUP BY PRODUCT_DEPARTMENT, REGION

51

Reference

• Redbooks at www.redbooks.ibm.com
• DB2 9 for z/OS Technical Overview SG24-7330
• DB2 9 for z/OS Performance Topics SG24-7473

• DB2 for z/OS home page at
www.ibm.com/software/db2zos
• E-support (presentations and papers) at

www.ibm.com/software/db2zos/support.html

http://www.redbooks.ibm.com/�
http://www.ibm.com/software/db2zos�
http://www.ibm.com/software/db2zos/support.html�

52

Key Details About DB2 10: Getting
Ready

Prerequisites: migrate from DB2 9 for z/OS or DB2 for z/OS V8
• z/OS V1.10 SMS-managed DB2-managed DB2 catalog
• System z10, z9, z890, z990, and above (no z800, z900)
• DB2 Connect 9 FP1, 9.7 FP3 for many 10 functions, FP2 beta
• IMS 10 & 11 (not 9) CICS compilers (See announcement)
• Info APARs for migration II14477 (9), II14474 (8)
• SPE PK56922 PK69411 PK61766 PK85956 PM04680 PK87280

PK87281 PM08102 PM08105
• Premigration check DSNTIJPA PM04968
Items deprecated in earlier versions eliminated: more for V8 mig.
• Private protocol  DRDA (DSNTP2DP, PK92339, PK64045)
• Old plans and packages V5 or before REBIND
• Plans containing DBRMs  packages PK62876 PK79925 (V8)
• ACQUIRE(ALLOCATE)  ACQUIRE(USE)
• Old plan table formats  DB2 V8 or 9, Unicode, 59 cols PK85068
• BookManager use for DB2 publications  Info Center, pdf

53

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements, or other publicly available sources. IBM has not tested
those products and cannot confirm the accuracy of performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products
should be addressed to the suppliers of those products.

The information on the new product is intended to outline our
general product direction and it should not be relied on in making a
purchasing decision. The information on the new product is for
informational purposes only and may not be incorporated into any
contract. The information on the new product is not a commitment,
promise, or legal obligation to deliver any material, code or
functionality. The development, release, and timing of any features
or functionality described for our products remains at our sole
discretion. *
This information may contain examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious, and any similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

Trademarks The following terms are trademarks or registered trademarks of other companies and have been used in at least one of the pages of the presentation:

The following terms are trademarks of International Business Machines Corporation in the United States, other countries, or both: AIX, AS/400, DataJoiner, DataPropagator, DB2, DB2
Connect, DB2 Extenders, DB2 OLAP Server, DB2 Universal Database, Distributed Relational Database Architecture, DRDA, eServer, IBM, IMS, iSeries, MVS, Net.Data, OS/390,
OS/400, PowerPC, pSeries, RS/6000, SQL/400, SQL/DS, Tivoli, VisualAge, VM/ESA, VSE/ESA, WebSphere, z/OS, zSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
Intel and Pentium are trademarks of Intel Corporation in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Other company, product, or service names may be trademarks or service marks of others.

Disclaimer/Trademarks

54

James Guo

IBM
guojw@us.ibm.com

Thank you

	Key SQL Function in �DB2 9 for z/OS & �Beyond
	Disclaimer
	Agenda
	Click to edit Master title style
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	DB2 10 Query Enhancements
	Click to edit Master title style
	Index to Data Access Path
	Hash Access
	Using Hash Access
	Examples of Select Statements Using Hash Access
	Example of Application for Hash Access
	Example of a Suitable Application For Hash Access
	Hashing Summary
	Click to edit Master title style
	Motivation for Temporal Data
	Versioned data or Temporal Data
	Current and History
	Temporal UPDATE example (business time)
	Click to edit Master title style
	Why Optimize Smart Analytics?
	What Is the IBM Smart Analytics Optimizer?
	Target Market: Business Intelligence (BI)
	What IBM Smart Analytics Optimizer is Designed For
	Reference
	Key Details About DB2 10: Getting Ready
	Slide Number 53
	James Guo

